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On the three-fold irregular branched coverings of 
spatial four-valent graphs and its applications 

Shin'ichi Kinoshi ta  

School of Science, Kwansei Gakuin University, Nishinomiya 662, Japan 

Let L be a spatial four-valent graph. Then one of the effective tools for studying the topolo- 
gical position of L in the 3-sphere is to consider the three-fold irregular branched coverings of 
L [1]. In this paper we will show that this technique can also be applied to some hypothetical 
three-valent molecular graphs in topological stereochemistry. 

1. Introduction 

In this section we briefly explain the concept  of  three-fold irregular b ranched  
coverings of  spatial four-valent  graphs.  A reader  who  is no t  famil iar  to kno t  theory  
m a y  skip this section and go on to the next, in which we will state the same contents  
in non- technical  terms and  rules. 

Let  L be a four-valent  graph in a 3-sphere S 3 and G(L) = 7rl (S 3 - L, o), the fun- 
damen ta l  g roup  of  the complemen ta ry  d o m a i n  of  L in S 3. We choose a Wir t inger  
p resen ta t ion  of  G(L), each of  whose generators ,  say xi, is a closed pa th  beginning at 
o, going a r o u n d  edge e i of L once and  coming  back to o, as shown in fig. 1.1. N o w  
let $3 be the symmetr ic  g roup  of  degree 3 and  {(12), (23), (13)}={a, b, c}. A represen- 
ta t ion  ~ (somet imes  called a m o n o d r o m y  map)  of  G(L) onto  $3 is a h o m o m o r p h -  
ism of  G(L) onto  $3, and  we restrict our  s tudy to the case where each ~o(xi) is ei ther 
a, b or c for every i. I f  we consider the images ofxi ' s ,  instead of  the xi's themselves,  
only two cases can occur  (up to conjugat ion)  at each crossing in a regular  projec- 
t ion of  L, as shown in fig. 1.2. Since L is four-valent ,  at each vertex of  L only three 
cases can occur,  as shown in fig. 1.3. 

N o w  we consider  the covering M~,(L) o f S  3 - L, whose fundamen ta l  g roup  is iso- 
m o r p h i c  to the inverse image of  {1, (23)}, where 1 is the identi ty of  $3. T h e n  we 
can cons t ruc t  the b ranched  covering whose branch points  are the spatial  g raph  L. 
Take  a small  2-sphere which encloses a vertex and intersects with  L at  four  points ,  
then  consider  the lift of  this 2-sphere in M~,(L). It  is the dis joint  un ion  o f a  torus  and  
a 2-sphere for the case fig. 1.3(1), and  a 2-sphere for the cases fig. 1.3(2) and  fig. 
1.3(3). To  m a k e  the b ranched  covering a three-dimensional  mani fo ld ,  we have to 
exclude the case fig. 1.3(1), tha t  is to say, we consider  only the representa t ion  which  
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satisfies either case fig. 1.3(2) or case fig. 1.3(3) at each vertex. Then, the branched 
covering M~o(L) associated with a representation ~o, if it exists, is an orientable 
three-dimensional manifold. 

To identify M(L), we may apply the operation, shown in fig. 1.4, which deforms 
the spatial graph L to a link L'. Here we should note that link U depends on the 
choice of the regular projection of L, so that it is not uniquely determined. It can be 
seen, however, that M~o(L) is homeomorphic to M¢(L'),  the three-fold irregular 
branched covering of L', whose representation qo' is inherited from ~o. Hence, we 
can identify M~o(L) through M¢(L'), where the latter can be identified or at least 
investigated by applying the theory of three-dimensional manifolds. We will eluci- 
date this procedure with examples in the following. 

2.3-colorabil i ty 

In this section we use the term 3-colorability to explain what we did in the former 
section (see also ref. [2]). Suppose a spatial four-valent graph is given, and we con- 
sider its regular projection and its diagram. (A regular projection of a spatial graph 
L is a projection of L into a plane such that (i) only multiple points of the projection 
are double points, and there are only finite number of them, and (ii) no double 
point is the image of any vertex of L.  A diagram is a regular projection with over/ 
under information at each crossing.) A segment of a diagram is a path which is 
one of the following: 

(1) a path from one undercrossing to the next undercrossing, 
(2) a path from one vertex to the first undercrossing, 
(3) a path from one vertex to the another vertex without undercrossing, and 
(4) a circle which does not have any undercrossing. 
Now we choose three colors, denoted by a, b and c. We associate each segment 

with one of these three colors, subjecting the following rules (up to renaming the 
colors): 

(1) at each crossing, either all three colors are present or just one color appears 
(see fig. 1.2), 

(2) at each vertex, four segments are colored in the cyclic order of either 
a, a, b, b or a, b, a, c (see fig. 1.3), and 

(3) at least two colors appear in the diagram. 
(Though we are going to study 3-colorability of spatial four-valent graphs, there 
are cases, where only 2-colors may be present (see fig. 2.6). The latter cannot occur, 
if the spatial graph is a knot, a simple closed curve in a 3-sphere.) 

If a diagram of a spatial four-valent graph permits such a coloring, the spatial 
four-valent graph is called 3-colorable. The 3-colorability of a spatial four-valent 
graph is a topological invariant and it does not depend on the choice of its dia- 
grams; i.e. either all of its diagrams are 3-colorable or none of them are 3-colorable. 
Some knots and links are 3-colorable (for instance, a trefoil knot), but there are 
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knots and links which are not 3-colorable (for instance, a trivial knot and a Hopf 
link) (see fig. 2.1 .) 

Now suppose that a spatial four-valent graph L is 3-colorable, and choose one 
of its diagrams with a coloring. Then, applying at each vertex the deformation 
shown in fig. 1.4, we can modify L into a link L ~, whose coloring is inherited from 
that of L. The link L t may depend on the choice of the diagrams. However, if we 
permit the modification shown in fig. 2.2, two different links obtained from two dif- 
ferent diagrams of a spatial four-valent graph turn out to be equivalent, i.e. one 
can modify one to the other under a finite number of these modifications (and 
moves permitted in topology, of course). 

Here, we give an example for explaining the above discussion. A spatial 04-curve 
consisting of two vertices and four edges, where each edge joins two vertices, is 
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given in fig. 2.3 (see also ref. [3]). We, for instance, choose one coloring as indicated 
in fig. 2.3. (Actually there are four essentially different colorings up to renaming 
colors). Then, we apply at each vertex the deformation shown in fig. 1.4 (see fig. 
2.4). After applying the modification shown in fig. 2.1 (see fig. 2.5) and moving the 
diagram, we have a diagram which is the disjoint union of a diagram of a trefoil 
knot kl and a trivial knot k2 (see fig. 2.6). Note that kl and k2 are differently 
colored. 
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To find a topological invariant of this coloring, we need some knowledge on 
knot theory. There is a polynomial invariant Ak(t) of a knot k, called the Alexander 
polynomial. For instance, Ak~ (t) = t 2 -- t + 1 for a trefoil knot kl and Ak2 (t) = 1 
for a trivial knot k2. Then we consider d = ]Ak, ( - 1 ) .  Ak2(--1)] = 3- 1 = 3, which 
turns out to be a topological invariant of this coloring of this 04-curve. 

To a reader who read section 1, we explain the above discussion as follows: First 
note that to associate a coloring of 3-colors is equivalent to giving a representation 
of the group G onto $3. Then, the modification of diagrams given in fig. 2.1 does 
not change the three-fold irregular branched covering associated to the representa- 
tion. Finally, when a diagram is modified to a disjoint union of a diagram of a 
knot kl and that of k2, where kl and k2 are differently colored, the three-fold irregu- 
lar branched covering associated to a representation is homeomorphic to the sum 
of the two-fold branched covering of kl and that of k2. Hence d = ]Ak,(--1) 
• Ak2 (--1)] is equal to the product of one-dimensional torsion numbers of the three- 
fold irregular branched covering associated to the given representation. 

Remark 
When a knot diagram is given, the Alexander polynomial Ak(t) can be calcu- 

lated easily with a computer. Also, there is another direct method to compute 
[Ak(--1)[. 

3. Appl icat ions  

First let us consider two molecules synthesized by Walba [4], which are shown 
in fig. 3.1, where a single line stands for a chain of atoms combined by single cova- 
lent bonds, and double lines for a direct double covalent bond. It is has been proved 
by Simon [5] that these molecules are topologically chiral, i.e. they are not equiva- 
lent in topological stereochemistry. Now let us consider this situation in the setting 
of knot theory of spatial graphs. We may represent these two molecules in two 
ways. One way is to represent them as spatial three-valent graphs, as shown in fig. 
3.2, and the other as spatial four-valent graphs, as shown in fig. 3.3. We note that 
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two spatial graphs in fig. 3.2. are topologically equivalent as spatial graphs, but 
two spatial graphs in fig. 3.3 are not topologically equivalent. (Simon's proof men- 
tioned above can be applied to this case, too.) The above examples, though chemi- 
cally very interesting, may be somewhat misleading, when we explain the 
transition from knot theory of molecules to that of spatial graphs. So, we introduce 
rather simple examples, which will clarify this transition. Suppose, for instance, a 
spatial 03-curve is given as shown in fig. 3.4, where vertices A and B are joined by 
three edges. We replace A and B with carbon atoms, so that the spatial 03-curve pre- 
sents a molecular graph now. Then, one of the three edges should stand for a dou- 
ble covalent bond and we have hypothetical molecular graphs such as shown in fig. 
3.5. We need not worry about the fact that the double covalent bonds are presented 
by curves. These are topological figures, so that double covalent bonds can be 
straighten up by moving other simple bonds. Then we can consider these molecular 
graphs as spatial four-valent graphs as shown in fig. 3.6. Are they topologically 
equivalent as spatial graphs? The answer is negative, which will be shown below. 
We will only sketch the outline of the proof. Since the spatial graphs LI and L2 in 
fig. 3.6 are four-valent, we apply the technique explained in sections 1 and 2. First 
we count the numbers of representations of G(L1) and G(L2) onto $3 (i.e. the num- 
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bers of essentially different 3-color colorings), respectively. Each of them is four. 
Next we count the numbers d introduced in section 2. They are four 1 's for L1, and 
one 1 and three 7's for L2. Hence, the spatial graphs L1 and L2 are not topologically 
equivalent, nor are the two molecular graphs in fig. 3.5. Actually, for LI all of 
four three-fold irregular branched coverings are 3-spheres and for/-I2 only one of 
the three-fold irregular branched coverings is a 3-sphere, but the other three are 
identical 3-manifolds with one-dimensional torsion number 7. Now we give 
another simple example. Let L3 and L4 be two spatial 0n-curves as shown in fig. 3.7. 
Note that these spatial 0n-curves are constructed from the same 03-curve. We apply 
the same technique to distinguish L3 and L4. When we count the numbers of possi- 
ble representations of G(L3) and G(L4) onto $3 (i.e. the numbers of essentially dif- 
ferent 3-color colorings), respectively, it is four for L3 and two for L4. Hence, we 
already know that L3 and L4 are not topologically equivalent. The four d's for L1 
are one 1 and three 11 's and the two d's for/-,2 are 1 and 2. Four three-fold irregular 
branched coverings for L1 are a 3-sphere and three identical 3-manifolds with 
one-dimensional torsion number 11. Two three-fold irregular branched coverings 
for L2 are a 3-sphere and a projective 3-space. 

4. Discuss ion 

(1) Our method of using three-fold irregular branched coverings does not suc- 
ceed in proving the chirality of spatial graphs in fig. 2.4. 

(2) However, Simon's method [5] may encounter difficulty, if a spatial graph con- 
tains a non-trivial knot, whose two-fold branched covering we have to consider. 
Then, we may need to construct a link theory in a 3-manifold, which would be much 
more complicated than that in a 3-sphere. 

(3) Though our method is also related to 3-manifold theory, in computation it 
actually does not go beyond 3-sphere. 

(4) The number of representations in our method (i.e. the number of 3-color col- 
orings) can be easily counted with a computer. 
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